Title: Optimal flickering light stimulation for entraining gamma waves in the human brain. Kanghee Lee^{1,†}, Yeseung Park^{1,2,†}, Seung Wan Suh¹, Sang-Su Kim³, Do-Won Kim³, Jaeho Lee⁴, Jaehyeok Park⁴, Seunghyup Yoo⁴, Ki Woong Kim^{1,2,5,*} ¹Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea ²Department of Brain and Cognitive Science, Seoul National University, Seoul, Republic of Korea ³Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea ⁴School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea ⁵Department of Psychiatry, Seoul National University, College of Medicine, Seoul, Republic of Korea [†]These authors have contributed equally to this work and share first authorship **Supplementary Figure 1.** Estimated luminance and error bound at 10cd/m². Dots, boxes, error bars indicate median, 25~75% probability distribution of luminance, 1.5 interquartile range, respectively. **Supplementary Figure 2.** Estimated luminance and error bound of white OLED at various light intensity. Dots and error bars indicate median and 1.5 interquartile range, respectively. **Supplementary Figure 3.** Topography of the gamma wave entrained by flickering light stimulation of different colors in the experiment 1 **Supplementary Figure 4.** Topography of the gamma wave entrained by flickering light stimulation of different luminance intensities in the experiment 2